Overview of Automatic Clearing House (ACH) Transactions

Thank you for your interest in our webinars! To access this presentation, please login at the top of the page. If you are not a registered member but are interested in our services, please contact [email protected].

ABA CE Credits: 1.25  CRCM, CAFP, CERP

Automatic Clearing House (ACH) Transactions have become part of everyday life in the banking industry. As one of the top ways to send and receive money, multiple regulations and guidelines provide instructions on how ACH transactions are handled. From a surface level review of NACHA to Regulation E, Regulation CC, BSA, and more, this webinar will give you a closer look at what an ACH is, what is required of banks that engage in ACH transactions, and how they should be handled in different situations.

Key Takeaways:

  1. What is ACH?
  2. A brief overview of NACHA
  3. Regulations impact on ACH transactions

People Who Should Attend: 

Compliance Officers and other relevant compliance team members, mortgage lending officers and staff, mortgage operations, deposit operations, operations staff, and internal audit.

Presenter:  Elizabeth K. Madlem, JD,
Vice President of Compliance Operations and Deputy General Counsel

Elizabeth is the Vice President of Compliance Operations and Deputy General Counsel at Compliance Alliance. In the past, she served as both the Operations Compliance Manager and Enterprise Risk Manager for Washington Federal Bank, a $16 billion dollar organization headquartered in Seattle, WA. She has industry expertise and real-world solutions surrounding bank-enterprise initiatives and knowledge of contract law and bank regulatory compliance. An attorney since 2010, Elizabeth was a Summa Cum Laude, Phi Beta Kappa, Delta Epsilon Sigma graduate of Saint Michael’s College in Burlington, VT, and a Juris Doctor from Valparaiso University School of Law in Indiana.

As the Vice President of Compliance Operations, Elizabeth oversees C/A’s Products and Services and plays an important part in all operational areas of C/A.